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Refresher

The two-step iteration view takes a preorder P and a P -name for a
preorder PQ. We then take the “product” of these two:
� Elements of P � PQ are pairs hp; Pqi where Pq 2 Cncl. PQ/ canonical
name for an element of PQ:

Cncl.�/ D ¹� W � is canonical ^ 1P 
 “� 2 �”º.

� We order hp�; Pq�i 6 hp; Pqi iff p� 6P p and p� 
 “ Pq� P6
PQ
Pq”.

Basically, we go down in each component in the only intelligible way
we can.

It’s not difficult to show that the trivial preorder 1 (with only one
element ; ordered byD) can be used to frame any preorder P in the
ground model as an iteration: 1 � LP Š P . This view will turn out to be
very useful in setting up longer iterations.
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Motivating long iterations

This allows us to iterate finitely many times. If we start with P 2 V ,
PQ 2 V P , we may view P � PQ as built up with two corresponding
sequences:

P0 D 1

PQ0 D LP P1 D P0 � PQ0 D 1 � PQ0

PQ1 D PQ P2 D P1 � PQ1 D .1 � PQ0/ � PQ1

Š P � PQ.

In this way, we may view any iteration of a sequence of names of
preorders h PQn W n < N i, N < !, as the result of a sequence of actual
preorders hPn W n � N i where P0 D 1 and

PnC1 D Pn � PQn D ...1 � PQ0/ � PQ1/ � : : :/ � PQn.



GOSTS Iterated
Forcing

James Holland

Definitions
Motivation

Long Iterations

Introduction to
support

The iterated
forcing theorem

Support
Direct limits

Inverse limits

Where we go from
here

Factoring
Defining the tail
iteration

The useful
perspective

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Motivating long iterations

Formally, this is a terrible monstrosity, but we can dramatically simplify
the situation if we reframe what the elements and order of these Pns
look like. Formally, elements of Pn have the form

hhhh;; Pq0i; Pq1i; � � �i; Pqn�1i

But really we should view such elements as sequences

p W n!
[
i<n

Cncl. PQi /, i.e. p 2
Y
i<n

Cncl. PQi /.
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Motivating long iterations

In doing so, we also arrive at a much better description of the order 6n

on Pn (consider instead nC 1 for the sake of notation). before, we
would have

hhhh;; Pq�
0 i; Pq

�
1 i; � � �i; Pq

�
ni 6n hhhh;; Pq0i; Pq1i; � � �i; Pqni

iff hhh;; Pq�
0 i; Pq

�
1 i; � � �i 6n hhh;; Pq0i; Pq1i; � � �i and the stronger forces

“ Pq�
n
P6

PQn
Pqn”. As sequences, however, we can rephrase this as saying

p� 6nC1 p iff
� p��n 6n p�n

� p��n 
 “p�.n/ P6
PQn p.n/”.

which basically says that we go down in each component in the only
way that makes sense. Note that this is partly why we start with 1:
p�0 D ; 2 1 for any p.
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Motivating long iterations

Note under this view we have the following properties of these
Pn D hPn; 6n; 1nis and PQn D hh PQn; P60

n; P10
niis):

1 Each PQn is a Pn-name for a preorder;
2 Each Pn is a preorder with P0 D 1;
3 Each p 2 Pn is a function p 2

Q
i<n Cncl. PQi /;

4 If p 2 Pn and m < n then p�m 2 Pm;
5 If PQn exists, p 2 PnC1 iff p�n 2 Pn, p.n/ 2 Cncl. PQn/ with

p�n 
 “p.n/ 2 PQn”; and
6 p� 6nC1 p iff p��n 6n p�n and p��n 
 “p�.n/ P60

n p.n/”.
From this, the question becomes: what do we do at limit stages? Should
P! be the direct limit of the Pns? The inverse limit? Some other thing
entirely? Sometimes one thing sometimes another? To answer this
question, we need to define and think of the support of our sequences,
which can be thought of as how often the p “does nothing”.
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Defining long iterations

In the end, all of the above notions of limit are possible, but they are
determined by what kinds of support we allow at limit stages.

Definition
For Pn and h PQi W i < ni as above, we define the support of p 2 Pn to
be the set

sprt.p/ D ¹n 2 dom.p/ W 1n 6
 “p.n/ D P10
n”º.

Basically we view p 2 Pn as sequences of elements, and the support is
just where p.n/ isn’t 1

PQn , i.e. p.n/ actually carries some information.
To define long iterations, we then restrict our functions p with
dom.p/ D ! to those with support in some I � P .!/.
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Defining long iterations

Definition
Let � be an ordinal, and I � P .�/ some collection we think of as
allowed supports. A �-stage iterated forcing with supports in I is a pair
of sequences hP˛ W ˛ � �i and h PQ˛ W ˛ < �i such that for all
� � ˛ < �;

1 Each P˛ D hP˛; 6˛; 1˛i is a preorder with P0 D 1;
2 Each PQ˛ D hh PQ˛; P60

˛; P10
˛ii is a P˛-name for a preorder;

3 1˛ D hP10
�
W � < ˛i;

4 Each element of P˛ is a function p 2
Q

�<˛ Cncl. PQ�/;
5 If p 2 P˛ , then p�� 2 P� ;
6 For ˛ D � C 1 a successor, we essentially set P�C1 D P� �

PQ� :
� p 2 P�C1 iff hp��; p.�/i 2 P� �

PQ� ,
� p� 6�C1 p iff p��� 6� p�� and p��� 
 “p�.�/ P60

� p.�/”; and
7 For ˛ a limit, we essentially require support in I :

� p 2 P˛ iff 8� < ˛ .p�� 2 P� / and sprt.p/ 2 I ;
� p� 6˛ p iff 8� < ˛ .p��� 6� p��/.
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Defining long iterations

It’s not difficult to show that �-stage iterations yield P� as a preorder.
Intuitively, each P˛ is the iteration of PQ�s for � < ˛—perhaps better
written

¨
�<˛
PQ�—with supports in some I which is not indicated with

either notation.

I will elect to use
¨

˛<�
PQ˛ for these iterations because I think it is a

little more transparent and frees up P . Additionally, it shows that these
are dependent on the PQ˛s. One can see in the above definition that the
only restriction of the PQ˛s is that they are

¨
�<˛
PQ� -names. The rest of

the definition is about defining these
¨

�<˛
PQ�s for ˛ � �.

As another bit of convention, we often refer to
¨

˛<�
PQ˛ as a �-stage

iteration rather than the pair of sequences h
¨

�<˛
PQ� W ˛ � �i and

h PQ˛ W ˛ < �i, just to save space.
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Defining long iterations

Result
Let � be an ordinal and

¨
˛<�
PQ˛ a �-stage iteration with supports in

some I � P .�/. Therefore
¨

˛<�
PQ˛ is a preorder.

Proof.
We prove this by induction on �. For successors, this is clear as we
basically defined, for � D �� C 1,

©
˛<��C1

PQ˛ Š

 ©
˛<��

PQ˛

!
� PQ�� .

So suppose � is a limit. Transitivity of 6� follows by transitivity of the
previous 6˛s inductively: p 6� q 6� r iff
8˛ < � .p�˛ 6˛ q�˛ 6˛ r�˛/ so 8˛ < � .p�˛ 6˛ r�˛/ and hence
p 6� r . Reflexivity is similarly easy as is showing P10

� is maximal.
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Introduction to support

To know more about what
¨

˛<�
PQ˛ is for limit ˛ (especially in regards

to previous iterations), we must investigate the suppports allowed.
Usually, we take these supports to be in an ideal, the dual concept to a
filter.

Definition
Let X be a set, I � P .X/. ; ¨ I � P .X/ is an ideal iff
� A � B 2 I implies A 2 I ; and
� A; B 2 I implies A [ B 2 I .

I D P .X/ is called an improper ideal, other ideals are proper.

The reason why we want this is that p 2
¨

�<�
PQ� implies

p�˛ 2
¨

�<˛
PQ� still with sprt.p�˛/ � sprt.p/ 2 I , we should have I

closed under subsets in this sort of way. It’s also advantageous to be
able to extend two conditions that “should” be compatible without I

getting in the way: if r 6 p; q then we at least have
sprt.p/ [ sprt.q/ � sprt.r/. So both of these requirements are
somewhat natural although not necessary strictly speaking.
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Introduction to support

There are lots of examples of ideals just as there are lots of examples of
filters. In fact, for any filter F � P .X/, ¹X n A W A 2 F º is an ideal
(and we can go backwards for proper ideals too). More concrete
examples for cardinals � � � include the following:
� ¹;º is an ideal;
� ¹X � � W jX j � �º is an ideal e.g. countable support;
� ¹X � � W jX j < �º is an ideal e.g. finite support;
� ¹X � � W X is bounded in �º D ¹X � � W sup X < �º is an ideal
(which is the same as the previous for regular �);
� ¹Y � X W x … Y º is an ideal for X ¤ ;, x 2 X , called a principal

ideal corresponding to principal filters.
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Iterated forcing theorem

We can show that this preorder
¨

˛<�
PQ˛ in the ground model gives us

what we want: any generic G over V breaks down as

V D V ŒG�0� � V ŒG0� D V ŒG�1� � V ŒG0�ŒG1� D V ŒG�2�

� � � � � V ŒG��� D V ŒG� 3 ¹G˛ W ˛ < �º

where each G˛ is . PQ˛/G�˛-generic over V ŒG�˛� and each G�˛ is¨
�<˛
PQ� -generic over V .

Theorem
Assume the following:
� � 2 Ord \ V ;
� I � P .�/ with I 2 V is a non-principal ideal;
�
¨

˛<�
PQ˛ 2 V is a �-stage iteration with supports in I ;

� G is
¨

˛<�
PQ˛-generic over V .

Therefore for each ˛ < �,
1 G�˛ D ¹p�˛ W p 2 Gº is

¨
�<˛
PQ� -generic over V ; and

2 G˛ D ¹p.˛/G�˛ W p 2 Gº is . PQ˛/G�˛-generic over V ŒG�˛�.
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Iterated forcing theorem

Note that this is basically the best that we could hope for: just because
we have an increasing sequence of generic extensions

V � V ŒG0� � V ŒG0�ŒG1� � � � �

doesn’t mean that there is some model V ŒG� at the end with
¹Gn W n < !º 2 V ŒG�. This is sort of in contrast to the two-step case
where V � V ŒG0� � V ŒG0�ŒG1� yields V ŒG1� D V ŒG0 �G1� as a
generic extension of a preorder in V .

We can sort-of trivially see the issue if we have, say, a countable
transitive model V with some h
n W n < !i cofinal in Ord \ V and we
continually force with Col.ℵ0; 
n/ at each stage. The nth generic Gn

will have
V � V ŒG0� � V ŒG0�ŒG1� � � � �

but there will not be any extension W modelling ZFC with V � W and
¹Gn W n < !º 2 W because such a model would have every ordinal as
countable, which is an issue.

This is sort-of cheating, though, since h
n W n < !i isn’t definable over
V so we can’t even define the iteration.
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Iterated forcing theorem

There is a more subtle argument, however, that shows we can’t just
amalgamate generics and get another generic extension above all the
previous ones in general. Again, assume V is countable and let
r W ! ! Ord \ V be a bijection. If we force with Add.ℵ0; 1/ at each
stage, we can pretty easily arrange that the nth generic Gn has its first
entry as r.n/. Thus we’d get V � V ŒG0� � V ŒG0�ŒG1� � � � �, but any
extension W modelling ZFC with V � W and ¹Gn W n < !º 2 W

would be able to reconstruct r and thus know the countability of
Ord \ V D Ord \W , which is an issue.

So we can’t always amalgamate generics even in principle unlike with
two-step iterations. But we do at least get the above result.
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Proof of the iterated forcing theorem

Result
1 G�˛ D ¹p�˛ W p 2 Gº is

¨
�<˛
PQ� -generic over V if G is¨

˛<�
PQ˛-generic over V .

Proof of (1).
First we show G�˛ is a filter.
� Since G is a filter and p� 6� p implies p��˛ 6˛ p�˛, it follows
that any two elements of G�˛ are compatible.
� G�˛ is closed upward since if p�˛ 2 G�˛ with p�˛ 6˛ q then
we can translate q to

¨
�<˛
PQ� just by adding a tail of P10

�
s:

q0 D q_hP10
�
W ˛ � � < �i so that p 6� q0 and q0�˛ D q 2 G�˛,

as desired.
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Proof of the iterated forcing theorem

Result
1 G�˛ D ¹p�˛ W p 2 Gº is

¨
�<˛
PQ� -generic over V if G is¨

˛<�
PQ˛-generic over V .

Proof of (1).
To show genericity, let D �

¨
�<˛
PQ� be dense in V . Let

D0 D ¹q 2
¨

�<�
PQ� W q�˛ 2 Dº. This D0 is dense in

¨
�<�
PQ� since if

p 2
¨

�<�
PQ� is arbitrary, then p�˛ has an extension p� 2 D. We have

sprt.p�_.p�Œ˛; �// � sprt.p/ [ sprt.p�/ 2 I ,

and therefore we have an actual condition p�_.p�Œ˛; �// in
¨

�<�
PQ�

and by construction also in D0. Therefore G \D0 ¤ ; and any
p 2 G \D0 has p�˛ 2 .G�˛/ \D ¤ ;, showing genericity.
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Proof of the iterated forcing theorem

Result
2 G˛ D ¹p.˛/G�˛ W p 2 Gº is . PQ˛/G�˛-generic over V ŒG�˛�.

Proof of (2).
Write Q˛ for . PQ˛/G�˛ . Firstly, G˛ is a filter:
� For p.˛/G�˛; q.˛/G�˛ 2 G˛ , we find a common extension

r 6� p; q 2 G giving that r�.˛ C 1/ 6˛C1 p�.˛ C 1/; q�.˛ C 1/

and therefore r�˛ 
 “r.˛/ P60

˛ p.˛/; q.˛/” with therefore
r�˛ 2 G�˛. It follows that r.˛/ is a common extension to
p.˛/G�˛ and q.˛/G�˛ .
� For upward closure, p�.˛/G�˛ 60

˛ p with p� 2 G yields

q D .p�
n ¹h˛; p�.˛/iº/ [ ¹h˛; Ppiº 2

©
�<�
PQ� ,

and p� 6� q 2 G and therefore q.˛/G�˛ D PpG�˛ D p 2 G˛ .
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Proof of the iterated forcing theorem

Result
2 G˛ D ¹p.˛/G�˛ W p 2 Gº is . PQ˛/G�˛-generic over V ŒG�˛�.

Proof of (2).
To show genericity of G˛ , let D � Q˛ be dense in V ŒG�˛�. There is
some condition pD 2 G with pD�˛ 
 “ PD is dense in PQ˛” (can get
pD D 1˛ if PD is chosen well enough). We get (by similar arguments as
before) that

D0
D ¹q 6� pD W pD�˛ 
 “q.˛/ 2 PD”º

is dense below pD in
¨

�<�
PQ� . In particular, there is some q 2 G \D0

where then q.˛/G�˛ 2 G˛ \D ¤ ;. This shows genericity.



GOSTS Iterated
Forcing

James Holland

Definitions
Motivation

Long Iterations

Introduction to
support

The iterated
forcing theorem

Support
Direct limits

Inverse limits

Where we go from
here

Factoring
Defining the tail
iteration

The useful
perspective

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The role of support

One result of the above theorem is that the kind of support we take
doesn’t impact that we end up with a generic extension beyond the
extensions of the previous iterations But this alone doesn’t tell us much
about what else we might have inadvertently added. Support, in telling
us what the iterations

¨
�<˛
PQ� look like for limit ˛ � �, then give us

information about V ŒG�˛� according to similar properties we’ve
already studied (e.g. being �-cc, < �-closed, and so on). The most
common kinds of support are all amalgamations of the following:

Definition
Let � be an ordinal, I � P .�/, and

¨
˛<�
PQ˛ a �-stage iteration with

supports in I . We say this is a
� finite support iteration iff I D ¹X � � W jX j < ℵ0º;
� bounded support iteration iff I D ¹X � � W sup X < �º;
� full support iteration iff I D P .�/;
� countable support iteration iff I D ¹X � � W jX j � ℵ0º.
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The role of support

We will only look at finite, bounded, and full support here. Countable
support is important for preservation of being “proper”. The others are
important for their preservation properties but also for how nice we can
describe the limit preorder

¨
˛<�
PQ˛ model-theoretically.

In particular,
� Bounded support at stage � corresponds to taking the direct limit of
previous iterations;
� Finite support corresponds to taking direct limits of previous
iterations at every limit stage;
� Full support corresponds to taking inverse limits of previous
iterations at every limit stage.
� There’s a notion of unbounded or prehaps supremum support at
stage � corresponding to taking the inverse limit of previous
iterations at that stage. (I’m unaware of a standard name for this.)

Bounded support at stage � means I \ P .�/ D
S

˛<� I \ P .˛/.
Supremum support at stage � I am using to mean
I \ P .�/ D ¹

S
x W x �

S
˛<� I \ P .˛/º, basically unbounded unions

of previously allowed supports.
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Direct limits

Informally, the direct limit of a bunch of models is just the least amount
we need to capture all the information of the previous models. This
means it’s sort of a least upper bound when it comes to embeddings.

If A is a set of models, F is a set of upward directed embeddings, the
direct limit dir limF A looks like the following (where all maps
commute).

A

C dir limF A M

B

(Solid lines are in F , dashed lines are direct limit embeddings, dotted
are to any other supposed direct limit.)
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Direct limits

It’s not too bad to show that direct limits always exist and can be
constructed as the disjoint union of the models modulo equivalence from
the embeddings: x � y iff there is are embeddings sending x and y to
the same place. So the universe is dir limF A D

®
Œx�� W x 2

F
A2A A

¯
.

Relations and functions are similarly interpreted: R is true of Ex iff we
can send every entry of Ex to the same place and have R be true there.

Formally, we need hA; F i needs to be a upward-directed system of
embeddings. This is easily accomplished since appending P10

�
s gives

embeddings into later iterations.

Result
Let

¨
˛<�
PQ˛ be a �-stage iteration with supports in some ideal

I � P .�/. Therefore for each ˛ < ˇ � �;
� There is an embedding i˛;ˇ W

¨
�<˛
PQ� !

¨
�<ˇ
PQ� defined by

�˛;ˇ .p/ D p_
hP10

� W ˛ � � < ˇi.

� Moreover, for incompatibility, p ? q iff �˛;ˇ .p/ ? �˛;ˇ .q/.
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Direct limits

Note: as preorders are ¹6; 1º-models, homomorphisms and embedings
just need to be order preserving (and maximal element preserving), but
it’s often useful to define embeddings and homomorphisms to also
preserve incompatibility as above. Doing this doesn’t make a difference
for the direct limit and it will be the same in either case. For the inverse
limit, however, homomorphisms should not preserve incompatibility.

With these �˛;ˇ embeddings, everything works together and the natural
“least upper bound” is just consists of conditions that eventually end in a
tail of P10

�
s. This means taking bounded support in our iterations. And it

turns out that this works.

Theorem
Let

¨
˛<�
PQ˛ be a non-trivial, �-stage iteration with supports in some

ideal I � P .�/ where � is a limit. Therefore,
¨

˛<�
PQ˛ is the direct

limit of previous iterations iff every x 2 I is bounded in �, meaning
I \ P .�/ D

S
˛<� I \ P .˛/.
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Direct limits

Theorem¨
˛<�
PQ˛ is the direct limit of previous iterations iff every x 2 I is

bounded in �.

Proof.
The (!) direction is pretty clear: any p 2

¨
˛<�
PQ˛ with unbounded

support is not in the image of any �˛;� for ˛ < � and hence¨
˛<�
PQ˛ ¤

S
˛<� �˛;�"

¨
�<˛
PQ� , which is necessary for being the

direct limit.

The ( ) direction isn’t particularly enlightening and we do not prove it
here (see notes I’ve been writing).
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Direct limits

Thus finite support iterations always take direct limits is the only
(natural) kind of support where this happens.

Corollary
Let

¨
˛<�
PQ˛ be a �-stage, finite support iteration. Therefore

¨
�<˛
PQ�

is the direct limit of previous iterations for each limit ˛. Moreover, any
non-trivial �-length iteration taking direct limits at every limit stage has
finite support.

Proof.
As finite support is bounded in every limit, we always take the direct
limit by the previous theorem. To see that finite support iterations are
the only iterations with this property, we proceed by induction on limit
˛ � �.

For ˛ D !, this is clear: bounded support in ! requires finite support
below !. For ˛ > !, any p 2

¨
�<˛
PQ� has p D �ˇ;˛.p�ˇ/ for some

ˇ < ˛. But then the support of both is inductively finite (even if ˇ is a
successor, it’s only finitely many iterations above a limit):
sprt.p/ D sprt.p�ˇ/ 2 I \ P .ˇ/ � ¹x � ˇ W x is finiteº.
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Corollary
Let

¨
˛<�
PQ˛ be a �-stage, finite support iteration. Therefore

¨
�<˛
PQ�

is the direct limit of previous iterations for each limit ˛. Moreover, any
non-trivial �-length iteration taking direct limits at every limit stage has
finite support.

Proof.
Additionally, we must have I \ P .ˇ/ � ¹x � ˇ W x is finiteº. This is
because at successor stages of the iteration, we allow ourselves to extend
the support by one element which eventually yields any finite number of
elements all of which must be allowed at stage ˛ as we’re taking the
direct limit.
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Direct limits

The benefit of things like direct limits is preservation of chain
conditions. In general we have the following.

Theorem
Let � be a limit ordinal and � a cardinal. Let

¨
˛<�
PQ˛ be a �-length

iteration with support in some ideal I � P .�/. Suppose
1
¨

˛<�
PQ˛ is the direct limit of previous iterations;

2
¨

�<˛
PQ˛ is �-cc for each ˛ < �; and

3 cof.�/ D � implies
¹˛ < � W

¨
�<˛
PQ� is the direct limit of previous iterationsº is

stationary in �.
Therefore

¨
˛<�
PQ˛ is �-cc.

We will prove only the case of � D ℵ1 (i.e. ccc) with finite support
iterations. (See the notes for the general proof.)
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Direct limits

We will prove only the case of � D ℵ1 (i.e. ccc) with finite support
iterations. (See the notes for the general proof.)

Theorem
Let

¨
˛<�
PQ˛ be a �-stage, finite support iteration such that for all

˛ � �, 1˛ 
 “ PQ˛ is ccc”. Therefore
¨

�<˛
PQ� is ccc for every ˛ � �.

Proof.
Proceed by induction on ˛ � �. Clearly for ˛ D 0,

¨
�<0
PQ� D 1 is ccc.

Inductively the successor case follows by the previous talk:
¨

�<˛
PQ� is

ccc and 1˛ 
 “ PQ˛ is ccc” implies
¨

�<˛C1
PQ� Š

¨
�<˛
PQ� �

PQ˛ is ccc.

So suppose ˛ is a limit but the result fails: A is an uncountable
antichain. By the Δ-system lemma, since all supports are finite, we may
assume all the conditions of A have the same intersection: p; q 2 A

implies sprt.p/ \ sprt.q/ D r for some finite r � ˛. But then
incompatibility is due to a disagreement in r � 1Cmax r :
¹p�.1Cmax r/ W p 2 Aº is an uncountable antichain of¨

�<1Cmax r
PQ� , contradicting the inductive hypothesis.
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Inverse Limits

Inverse limits appear much less in logic than the direct limit does. It’s
basically the greatest lower bound of a (downward directed) set of
models as below:

A

M inv limF A C

B

The basic idea isn’t that inv limF A embeds into everything but instead
that it projects onto everything. In essence, it’s the minimum amount of
elements that are able to generate everything else by projections (i.e.
homomorphisms). This is how the inverse limit can be “bigger” than the
models of A.
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Inverse limits

The formal definition of an inverse limit talks about hA; F i being a
projective system of homomorphisms which basically means F consists
of homomorphisms between the models of A that all play nicely with
composition, and the models are downward directed (by
homomorphisms in F ).

The inverse limit is just something that projects (playing nicely with
composition in F ) to all of the models of A and any other such model
has a unique projection to the inverse limit playing nicely with the
inverse limit’s projections and those in F . In general, we always get that
the inverse limit exists (although its theory might be significantly
different from the models of A). inv limF A is equal to

D

´
x 2

Y
A2A

A W 8A;B 2 A .fA;B 2 F ! fA;B.x.A// D x.B//

µ
.

Relation interpretations have R.Ex/ iff for all A 2 A, RA.Ex.A//.
Basically, we take the product of everything and take the elements that
play nicely with the projections.
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Inverse limits

Projections for us are just restrictions. So “playing nicely” with these
restrictions just means that all of the restrictions are in previous
iterations.

Result
Let

¨
˛<�
PQ˛ be a �-stage iteration. Therefore, for each ˛ < ˇ � �, the

restriction map �ˇ;˛ D .p 7! p�˛/ is a homomorphism from
¨

�<ˇ
PQ�

to
¨

�<˛
PQ� .

This motivates the following definition or result depending on how you
frame things.

Definition
We say

¨
˛<�
PQ˛ is the inverse limit of previous iterations iff©

˛<�
PQ˛ D

°
p 2

Y
˛<�

Cncl. PQ˛/ W 8˛ < �
�
x�˛ 2

©
�<˛
PQ�

�±
.

In the previous sense, x 2 inv limF A took the form x D hp�˛ W ˛ < �i

so we have just identified x with
S

˛<� x.˛/ D
S

˛<� p�˛.
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Inverse limits

It should then make sense why supremum support gives inverse limits.

Theorem
Let

¨
˛<�

PQ˛ be a non-trivial �-stage iteration with support in a
non-principal ideal I � P .�/. Therefore

¨
�<˛
PQ� is the inverse limit

of previous iterations iff we use supremum support at stage ˛:

¹x 2 I\P .˛/ W sup x D ˛º D ¹x 2 P .˛/ W sup x D ˛^8ˇ < ˛ .x\ˇ 2 I /º.

Proving this isn’t particularly interesting since it relies on the fine details
of defining the inverse limit (see the notes). The basic idea is that if
every restriction of p is in previous iterations, then we should have
sprt.p�ˇ/ � ˇ is in I for each ˇ < dom.p/ so that
sprt.p/ D

S
ˇ<dom.p/ sprt.p�ˇ/. And going the other direction lets us

build up a p by building up the support and being the inverse limit
requires the limit support to be in the poset.
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Inverse limits

Full support then always takes inverse limits.

Corollary
Let

¨
˛<�
PQ˛ be a �-stage, full support iteration. Therefore

¨
�<˛
PQ� is

the inverse limit of previous iterations for each limit ˛. Moreover, full
support is the only non-principal ideal with this property.

Proof.
Since every support is in I , we immediately get that the limit of supports
in I is also in I and therefore we are using supremum support and thus
take the inverse limit at every limit stage.

Suppose we take inverse limits at every limit stage and our support is in
I . Since I is closed under finite unions and is non-principal, all finite
subsets of � are in I . Since we’re taking the inverse limit at stage !,

¹x 2 I\P .!/ W sup x D !º D ¹x 2 P .!/ W sup x D !^8n < ! .x\n 2 I /º,

meaning that all infinite subsets of ! are in I in addition to all finite
subsets: I \ P .!/ D P .!/.
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Inverse limits

Corollary
Full support is the only non-principal ideal that takes inverse limits at
every stage.

Proof.
Inductively, suppose we have I \ P .ˇ/ D P .ˇ/ for all limit ˇ < ˛. It
follows that I \ P .ˇ/ D P .ˇ/ for all ˇ < ˛ including successors.
Taking the inverse limit at stage ˛, since all bounded subsets of ˛ are in
I , it follows as with ! that all unbounded subsets of ˛ are also in I

(X � ˛ has X D
S

ˇ<˛ X \ ˇ with X \ ˇ 2 I ) and therefore
I \ P .˛/ D P .˛/ for all limit ˛.

Technically, it’s still possible to take the inverse limit at every stage
without full support if we allow trivial preorders at certain stages ˛ and
remove some elements containing ˛. But these supports are somewhat
ad hoc. Natural examples of support with have I being a non-principal
ideal.
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Inverse limits

Inverse limits, allowing lots of support, usually work well with
properties stating the existence of certain elements below others. For
example, as with direct limits and being �-cc, we have a pretty long
theorem detailing sufficient conditions for being < �-closed.

Theorem
Let

¨
˛<�
PQ˛ be a �-stage iteration with support in some ideal

I � P .�/ such that
� inverse limits are taken at every limit stage ˛ � � with cof.˛/ < �;
� we take either direct or inverse limits at all other stages;
� 1˛ 
 “ PQ˛ is < L�-closed” for each ˛ < �.

Therefore
¨

˛<�
PQ˛ is < �-closed.

As with the �-cc theorem before, it’s easiest to show just in the case of
full support, but the general version isn’t terribly worse conceptually.
Note that the use of canonical names here is needed (or any similar kind
of name).
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Corollary
Let

¨
˛<�
PQ˛ be a full support �-stage iteration. Suppose

1˛ 
 “ PQ˛ is < L�-closed” for each ˛ < �. Therefore
¨

˛<�
PQ˛ is

< �-closed.

Proof.
Proceed by induction on �. � D 0 is trivial, � a successor was shown
previously. For � a limit, let hp� W � < �i be a 6�-decreasing sequence
of length � < �, meaning hp��˛ W ˛ < �i is 6˛-decreasing for each
˛ < � . We will define p below each p� by defining p�˛ for each
˛ � �.

Firstly, define p�0 D ;. For p�˛ defined thus far, we inductively have

p�˛ 2
©
�<˛

PQ� and p�˛ 6˛ p��˛ for all � < � .

Since p�˛ is below all the others, we get

p�˛ 
 “hp� W � < L�i is decreasing ^ L� < L� ^ PQ˛ is < L�-closed”
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Corollary
Let

¨
˛<�
PQ˛ be a full support �-stage iteration. Suppose

1˛ 
 “ PQ˛ is < L�-closed” for each ˛ < �. Therefore
¨

˛<�
PQ˛ is

< �-closed.

Proof.

p�˛ 
 “hp� W � < L�i is decreasing ^ L� < L� ^ PQ˛ is < L�-closed”

and therefore p�˛ forces some name below all of the p�.˛/s. Using
canonical names, we can find an actual instance p.˛/ where
p�˛_p.˛/ 2

¨
�<˛C1

PQ� . This defines p�˛ C 1. For limit ˛,
p�˛ D

S
ˇ<˛ p�ˇ so this defines p D p�� everywhere. Since we take

full support, we automatically get p 2
¨

˛<�
PQ˛ and p 6� p� for all

� < � .
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Defining other supports

The main idea here is partly to motivate more complicated supports.
Elsewhere in the literature, supports may be defined by where direct or
inverse limits are taken. Translating this into bounded and supremum
support tells more concretely what the elements of the iteration look
like. The translation is more-or-less unnecessary, and it’s more intuitive
to think of the preorders in terms of their structure and how they relate to
previous iterations. The more important translation goes in the other
direction: taking things in terms of support and translating this to
understand the limit stages of the iterations.

For example Easton support1is usually defined by something like

I D ¹x � � W 8� < � .� is regular! jReg \ x \ �j < �/º,

where Reg D ¹� 2 Ord W � is regularº. On the surface, this is hard to
unpack. But we can break it down by thinking about what happens at
each limit stage.

1Usually, with easton support we force with trivial preorders at non-regular cardinal
stages, so some definitions might differ slightly from this (e.g. Jech).
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Defining other supports

The main idea here is partly to motivate more complicated supports.
Elsewhere in the literature, supports may be defined by where direct or
inverse limits are taken. Translating this into bounded and supremum
support tells more concretely what the elements of the iteration look
like. The translation is more-or-less unnecessary, and it’s more intuitive
to think of the preorders in terms of their structure and how they relate to
previous iterations. The more important translation goes in the other
direction: taking things in terms of support and translating this to
understand the limit stages of the iterations.

For example Easton support1is usually defined by something like

I D ¹x � � W 8� < � .� is regular! jReg \ x \ �j < �/º,

where Reg D ¹� 2 Ord W � is regularº. On the surface, this is hard to
unpack. But we can break it down by thinking about what happens at
each limit stage.

1Usually, with easton support we force with trivial preorders at non-regular cardinal
stages, so some definitions might differ slightly from this (e.g. Jech).
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Defining other supports

The main idea here is partly to motivate more complicated supports.
Elsewhere in the literature, supports may be defined by where direct or
inverse limits are taken. Translating this into bounded and supremum
support tells more concretely what the elements of the iteration look
like. The translation is more-or-less unnecessary, and it’s more intuitive
to think of the preorders in terms of their structure and how they relate to
previous iterations. The more important translation goes in the other
direction: taking things in terms of support and translating this to
understand the limit stages of the iterations.

For example Easton support1is usually defined by something like

I D ¹x � � W 8� < � .� is regular! jReg \ x \ �j < �/º,

where Reg D ¹� 2 Ord W � is regularº. On the surface, this is hard to
unpack. But we can break it down by thinking about what happens at
each limit stage.

1Usually, with easton support we force with trivial preorders at non-regular cardinal
stages, so some definitions might differ slightly from this (e.g. Jech).
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Defining other supports

I D ¹x � � W 8� < � .� is regular! jReg \ x \ �j < �/º.

We really care about x \ � for � < �, i.e. P .�/:
� If � isn’t regular, we take full support below �.
� If � is regular because it’s a successor cardinal, we also take full
support below �.
� If � is regular but a limit cardinal (i.e. weakly inaccessible), then
the support must be smaller than the cofinality of �, i.e. the support
must be bounded.

So Easton support can also be described as taking direct limits at
inaccessible stages and inverse limits everywhere else.

This idea is also useful in factoring because often we want to break up
an iteration

¨
˛<�
PQ˛ to be

¨
�<˛
PQ� �

¨
˛��<�

PQ� and knowing
information about the initial segments can help.
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Factoring

� In the end, we’d like to have©
�<�

PQ� D
©
�<˛

PQ� �
©

˛��<�

PQ� .

In essence, viewing V ŒG� D V ŒG�˛�ŒG�Œ˛; �/�.
� The issue with this is somewhat technical, but results basically
show that the technical issues are irrelevant and this over-simplified
idea is essentially correct in every meaningful way.
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Factoring

The natural way of defining the tail iteration such that
V ŒG� D V ŒG�˛�ŒG�Œ˛; �/� is just to take the full iteration, and restrict
the elements: for p 2

¨
�<�
PQ� , consider the tail p�Œ˛; �/.

Unfortunately, this approach has some name issues: p�Œ˛; �/ isn’t a¨
�<˛
PQ� -name. So we just translate it in the natural way (don’t

translate it at all).

Definition
Let � be an ordinal, ˛ < �, and

¨
�<�
PQ� a �-stage iteration. Define the¨

�<˛
PQ� -name

*˛��<�

PQ� D

°
.p�Œ˛; �//z W p 2©

�<�
PQ�

±
.

We order these elements with the
¨

�<˛
PQ� -name for a preorder

P4�
˛ D

°
hhhq; rii; pi W p 2

©
�<˛
PQ� ^ p_q 6� p_r

±
.
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Factoring

All of this is just a very formal way of saying that we’re merely
restricting the conditions’ domains, and order things in the same way as
before: in a generic extension by the initial iteration,

q 4�
˛ r iff 9p 2 G�˛ .p_q 6� p_r/.

This pretty easily ensures that P4�
˛ is forced to be a preorder (and that

1��Œ˛; �/ is maximal).
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Factoring

There are two main properties we’re interested in with the tail iteration
that aren’t technically true: for G�˛

¨
�<˛
PQ� -generic over V ,

1
¨

�<�
PQ� D

¨
�<˛
PQ� �*˛��<�

PQ� ;

2 *˛��<�
PQ� is an iteration in V ŒG�˛�;

Nevertheless, we get two properties that are good enough and justify the
intuition:

1
¨

�<�
PQ� is forcing equivalent to

¨
�<˛
PQ� �*˛��<�

PQ� ;

2 *˛��<�
PQ� is isomorphic to a .� � ˛/-stage iteration in V ŒG�˛�;

Proving isn’t difficult by the dense homomorphism f .p/ D hp�˛; p˛;�i

where p˛;� is a canonical name for .p�Œ˛; �//z.
Proving the second, however, is incredibly complicated and technical,
requiring recursively defined isomorphisms and translating names. The
result should really be thought of as trivial, however: these technical
obstacles are not conceptual ones. (See notes for proofs of both.)
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Factoring

I thought about including overviews of the proofs, but they are so
technical and god-damn boring there’s just no point. The main problem
for (2) is that each PQˇ is a

¨
�<ˇ
PQ� -name, not a¨

�<˛
PQ� �*˛��<ˇ

PQ� -name.

The results are pretty useful, though, and mostly unstated. For example,
we often use these with elementary embeddings because it allows us to
use properties of the critical point: if crit.j / D �, j

�¨
�<�
PQ�

�
can be

thought of as ©
�<�

PQ� � *���<j.�/

PP�

(so long as the PQ�s are small enough etc.)
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Factoring

As a result, knowing properties of these tail iterations from properties of
the whole iteration can be informative.
� If

¨
�<�
PQ� is the direct limit of previous iterations, then (in

V ŒG�˛�, the tail iteration*˛��<�
PQ� is the direct limit of

*˛��<ˇ
PQ� for ˛ < ˇ < �.

� We don’t get the same for inverse limits, unfortunately, but there
are some partial results that also require introducing more
terminology and involve uninteresting, technical proofs (see
Baumgartner’s survey paper).
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